Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Am J Trop Med Hyg ; 109(6): 1372-1379, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37931314

ABSTRACT

Vector-borne diseases continue to impose a major health burden on Peru and neighboring countries. The challenge of addressing vector-borne disease is compounded by changing social, economic, and climatic conditions. Peri-urban Arequipa is an important region to study insect infestations because of ongoing challenges with disease vectors such as triatomines and a variety of other insects. We conducted surveys (N = 1,182) and seven focus groups (average seven participants) in peri-urban Arequipa to explore knowledge of and perception toward various insects that infest the region. Focus group participants reported the presence of a wide variety of insects in and around the home, including disease vectors such as triatomines (also identified by 27.2% of survey households), mosquitoes, spiders, and bed bugs, as well as nuisance insects. Health concerns related to insects included vector-borne diseases, spider bites, allergies, and sequelae from bed bug bites, and hygiene concerns. A majority of participants in the quantitative surveys identified triatomines as the insect they were most worried about (69.9%) and could identify Chagas disease as a health risk associated with triatomines (54.9%). Insect infestations in peri-urban Arequipa present multiple burdens to residents, including injury and illness from triatomines and other insects, as well as potential mental and economic concerns related to insects such as bed bugs. Future initiatives should continue to address triatomine infestations through educational outreach and implement a more holistic approach to address the burden of both disease and nuisance insects.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Humans , Peru/epidemiology , Mosquito Vectors , Chagas Disease/epidemiology , Insecta
2.
PLoS Negl Trop Dis ; 17(10): e0011694, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37844066

ABSTRACT

Vector-borne diseases remain a significant public health threat in many regions of the world. Traditional vector surveillance and control methods have relied on active and passive surveillance programs, which are often costly and time-consuming. New internet-based vector surveillance systems have shown promise in removing some of the cost and labor burden from health authorities. We developed and evaluated the effectiveness of a new internet-based surveillance system, "AlertaChirimacha", for detecting Triatoma infestans (known locally by its Quechua name, Chirimacha), the Chagas disease vector, in the city of Arequipa, Peru. In the first 26 months post-implementation, AlertaChirimacha received 206 reports of residents suspecting or fearing triatomines in their homes or neighborhoods, of which we confirmed, through pictures or inspections, 11 (5.3%) to be Triatoma infestans. After microscopic examination, none of the specimens collected were infected with Trypanosoma cruzi. AlertaChirimacha received 57% more confirmed reports than the traditional surveillance system and detected 10% more infested houses than active and passive surveillance approaches combined. Through in-depth interviews we evaluate the reach, bilateral engagement, and response promptness and efficiency of AlertaChirimacha. Our study highlights the potential of internet-based vector surveillance systems, such as AlertaChirimacha, to improve vector surveillance and control efforts in resource-limited settings. This approach could decrease the cost and time horizon for the elimination of vector-mediated Chagas disease in the region.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Humans , Chagas Disease/epidemiology , Chagas Disease/prevention & control , Triatoma/physiology , Insect Vectors/physiology , Peru/epidemiology
3.
Epidemics ; 44: 100710, 2023 09.
Article in English | MEDLINE | ID: mdl-37556994

ABSTRACT

The spread of SARS-CoV-2, like that of many other pathogens, is governed by heterogeneity. "Superspreading," or "over-dispersion," is an important factor in transmission, yet it is hard to quantify. Estimates from contact tracing data are prone to potential biases due to the increased likelihood of detecting large clusters of cases, and may reflect variation in contact behavior more than biological heterogeneity. In contrast, the average number of secondary infections per contact is routinely estimated from household surveys, and these studies can minimize biases by testing all members of a household. However, the models used to analyze household transmission data typically assume that infectiousness and susceptibility are the same for all individuals or vary only with predetermined traits such as age. Here we develop and apply a combined forward simulation and inference method to quantify the degree of inter-individual variation in both infectiousness and susceptibility from observations of the distribution of infections in household surveys. First, analyzing simulated data, we show our method can reliably ascertain the presence, type, and amount of these heterogeneities given data from a sufficiently large sample of households. We then analyze a collection of household studies of COVID-19 from diverse settings around the world, and find strong evidence for large heterogeneity in both the infectiousness and susceptibility of individuals. Our results also provide a framework to improve the design of studies to evaluate household interventions in the presence of realistic heterogeneity between individuals.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Contact Tracing/methods , Family Characteristics , Computer Simulation
4.
PLoS Comput Biol ; 19(5): e1011115, 2023 05.
Article in English | MEDLINE | ID: mdl-37155680

ABSTRACT

BACKGROUND: Chagas disease, a vector-borne parasitic disease caused by Trypanosoma cruzi, affects millions in the Americas. Dogs are important reservoirs of the parasite. Under laboratory conditions, canine treatment with the systemic insecticide fluralaner demonstrated efficacy in killing Triatoma infestans and T. brasiliensis, T. cruzi vectors, when they feed on dogs. This form of pest control is called xenointoxication. However, T. cruzi can also be transmitted orally when mammals ingest infected bugs, so there is potential for dogs to become infected upon consuming infected bugs killed by the treatment. Xenointoxication thereby has two contrasting effects on dogs: decreasing the number of insects feeding on the dogs but increasing opportunities for exposure to T. cruzi via oral transmission to dogs ingesting infected insects. OBJECTIVE: Examine the potential for increased infection rates of T. cruzi in dogs following xenointoxication. DESIGN/METHODS: We built a deterministic mathematical model, based on the Ross-MacDonald malaria model, to investigate the net effect of fluralaner treatment on the prevalence of T. cruzi infection in dogs in different epidemiologic scenarios. We drew upon published data on the change in percentage of bugs killed that fed on treated dogs over days post treatment. Parameters were adjusted to mimic three scenarios of T. cruzi transmission: high and low disease prevalence and domestic vectors, and low disease prevalence and sylvatic vectors. RESULTS: In regions with high endemic disease prevalence in dogs and domestic vectors, prevalence of infected dogs initially increases but subsequently declines before eventually rising back to the initial equilibrium following one fluralaner treatment. In regions of low prevalence and domestic or sylvatic vectors, however, treatment seems to be detrimental. In these regions our models suggest a potential for a rise in dog prevalence, due to oral transmission from dead infected bugs. CONCLUSION: Xenointoxication could be a beneficial and novel One Health intervention in regions with high prevalence of T. cruzi and domestic vectors. In regions with low prevalence and domestic or sylvatic vectors, there is potential harm. Field trials should be carefully designed to closely follow treated dogs and include early stopping rules if incidence among treated dogs exceeds that of controls.


Subject(s)
Chagas Disease , Insecticides , Triatoma , Trypanosoma cruzi , Animals , Dogs , Insect Vectors , Chagas Disease/epidemiology , Chagas Disease/prevention & control , Chagas Disease/veterinary , Triatoma/parasitology , Insecticides/pharmacology , Mammals
5.
medRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747723

ABSTRACT

Background: Chagas disease, a vector-borne parasitic disease caused by Trypanosoma cruzi , affects millions in the Americas. Dogs are important reservoirs of the parasite. Under laboratory conditions, canine treatment with the systemic insecticide fluralaner demonstrated efficacy in killing Triatoma infestans and T. brasiliensis, T. cruzi vectors, when they feed on dogs. This form of pest control is called xenointoxication. However, T. cruzi can also be transmitted orally when mammals ingest infected bugs, so there is potential for dogs to become infected upon consuming infected bugs killed by the treatment. Xenointoxication thereby has two contrasting effects on dogs: decreasing the number of insects feeding on the dogs but increasing opportunities for exposure to T. cruzi via oral transmission to dogs ingesting infected insects. Objective: Examine the potential for increased infection rates of T. cruzi in dogs following xenointoxication. Design/Methods: We built a deterministic mathematical model, based on the Ross-MacDonald malaria model, to investigate the net effect of fluralaner treatment on the prevalence of T. cruzi infection in dogs in different epidemiologic scenarios. We drew upon published data on the change in percentage of bugs killed that fed on treated dogs over days post treatment. Parameters were adjusted to mimic three scenarios of T. cruzi transmission: high and low disease prevalence and domestic vectors, and low disease prevalence and sylvatic vectors. Results: In regions with high endemic disease prevalence in dogs and domestic vectors, prevalence of infected dogs initially increases but subsequently declines before eventually rising back to the initial equilibrium following one fluralaner treatment. In regions of low prevalence and domestic or sylvatic vectors, however, treatment seems to be detrimental. In these regions our models suggest a potential for a rise in dog prevalence, due to oral transmission from dead infected bugs. Conclusion: Xenointoxication could be a beneficial and novel One Health intervention in regions with high prevalence of T. cruzi and domestic vectors. In regions with low prevalence and domestic or sylvatic vectors, there is potential harm. Field trials should be carefully designed to closely follow treated dogs and include early stopping rules if incidence among treated dogs exceeds that of controls. Author summary: Chagas disease, caused by the parasite Trypanosoma cruzi , is transmitted via triatomine insect vectors. In Latin America, dogs are a common feeding source for triatomine vectors and subsequently an important reservoir of T. cruzi . One proposed intervention to reduce T. cruzi transmission is xenointoxication: treating dogs with oral insecticide to kill triatomine vectors in order to decrease overall T. cruzi transmission. Fluralaner, commonly administered to prevent ectoparasites such as fleas and ticks, is effective under laboratory conditions against the triatomine vectors. One concern with fluralaner treatment is that rapid death of the insect vectors may make the insects more available to oral ingestion by dogs; a more effective transmission pathway than stercorarian, the usual route for T. cruzi transmission. Using a mathematical model, we explored 3 different epidemiologic scenarios: high prevalence endemic disease within a domestic T. cruzi cycle, low prevalence endemic disease within a domestic T. cruzi cycle, and low prevalence endemic disease within a semi-sylvatic T. cruzi cycle. We found a range of beneficial to detrimental effects of fluralaner xenointoxication depending on the epidemiologic scenario. Our results suggest that careful field trials should be designed and carried out before wide scale implementation of fluralaner xenointoxication to reduce T. cruzi transmission.

6.
Behav Med ; 49(1): 53-61, 2023.
Article in English | MEDLINE | ID: mdl-34847825

ABSTRACT

Incentives are a useful tool in encouraging healthy behavior as part of public health initiatives. However, there remains concern about motivation crowd out-a decline in levels of motivation to undertake a behavior to below baseline levels after incentives have been removed-and few public health studies have assessed for motivation crowd out. Here, we assess the feasibility of identifying motivation crowd out following a lottery to promote participation in a Chagas disease vector control campaign. We look for evidence of crowd out in subsequent participation in the same behavior, a related behavior, and an unrelated behavior. We identified potential motivation crowd out for the same behavior, but not for related behavior or unrelated behaviors after lottery incentives are removed. Despite some limitations, we conclude that motivation crowd out is feasible to assess in large-scale trials of incentives.


Subject(s)
Health Behavior , Motivation , Humans , Feasibility Studies , Peru
7.
medRxiv ; 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36523404

ABSTRACT

The spread of SARS-CoV-2, like that of many other pathogens, is governed by heterogeneity. "Superspreading," or "over-dispersion," is an important factor in transmission, yet it is hard to quantify. Estimates from contact tracing data are prone to potential biases due to the increased likelihood of detecting large clusters of cases, and may reflect variation in contact behavior more than biological heterogeneity. In contrast, the average number of secondary infections per contact is routinely estimated from household surveys, and these studies can minimize biases by testing all members of a household. However, the models used to analyze household transmission data typically assume that infectiousness and susceptibility are the same for all individuals or vary only with predetermined traits such as age. Here we develop and apply a combined forward simulation and inference method to quantify the degree of inter-individual variation in both infectiousness and susceptibility from observations of the distribution of infections in household surveys. First, analyzing simulated data, we show our method can reliably ascertain the presence, type, and amount of these heterogeneities with data from a sufficiently large sample of households. We then analyze a collection of household studies of COVID-19 from diverse settings around the world, and find strong evidence for large heterogeneity in both the infectiousness and susceptibility of individuals. Our results also provide a framework to improve the design of studies to evaluate household interventions in the presence of realistic heterogeneity between individuals.

8.
PLoS One ; 17(5): e0268798, 2022.
Article in English | MEDLINE | ID: mdl-35617203

ABSTRACT

Bed bug outbreaks pose a major challenge in urban environments and cause significant strain on public resources. Few studies have systematically analyzed this insect epidemic or the potential effects of policies to combat bed bugs. Here we use three sources of administrative data to characterize the spatial-temporal trends of bed bug inquiries, complaints, and reports in New York City. Bed bug complaints have significantly decreased (p < 0.01) from 2014-2020, the absolute number of complaints per month dropping by half (875 average complaints per month to 440 average complaints per month); conversely, complaints for other insects including cockroaches and flies did not decrease over the same period. Despite the decrease of bed bug complaints, areas with reported high bed bug infestation tend to remain infested, highlighting the persistence of these pests. There are limitations to the datasets; still the evidence available suggests that interventions employed by New York City residents and lawmakers are stemming the bed bug epidemic and may serve as a model for other large cities.


Subject(s)
Bedbugs , Ectoparasitic Infestations , Animals , Benchmarking , Ectoparasitic Infestations/epidemiology , Housing , New York City/epidemiology
9.
PLOS Glob Public Health ; 2(8): e0000145, 2022.
Article in English | MEDLINE | ID: mdl-36962496

ABSTRACT

In Arequipa, Peru, a large-scale vector control campaign has successfully reduced urban infestations of the Chagas disease vector, Triatoma infestans. In addition to preventing new infections with Trypanosoma cruzi (etiological agent of Chagas disease), the campaign produced a wealth of information about the distribution and density of vector infestations. We used these data to create vector infestation risk maps for the city in order to target the last few remaining infestations, which are unevenly distributed and difficult to pinpoint. Our maps, which are provided on a mobile app, display color-coded, individual house-level estimates of T. infestans infestation risk. Entomologic surveillance personnel can use the maps to select homes to inspect based on estimated risk of infestation, as well as keep track of which parts of a given neighborhood they have inspected to ensure even surveillance throughout the zone. However, the question then becomes, how do we encourage surveillance personnel to actually use these two functionalities of the risk map? As such, we carried out a series of rolling trials to test different incentive schemes designed to encourage the following two behaviors by entomologic surveillance personnel in Arequipa: (i) preferential inspections of homes shown as high risk on the maps, and (ii) even surveillance across the geographical distribution of a given area, which we term, 'spatial coverage.' These two behaviors together constituted what we termed, 'optimal map use.' We found that several incentives resulted in one of the two target behaviors, but just one incentive scheme based on the game of poker resulted in optimal map use. This poker-based incentive structure may be well-suited to improve entomological surveillance activities and other complex multi-objective tasks.

10.
AIDS Patient Care STDS ; 35(12): 467-473, 2021 12.
Article in English | MEDLINE | ID: mdl-34788110

ABSTRACT

Evidence on the impact of human immunodeficiency virus (HIV) drug resistance on regimens following treatment failure is varied and inconclusive. Differential medication adherence may explain this variation. We aimed to test the association between drug resistance at first-line antiretroviral therapy (ART) switch and adherence to and virologic failure on subsequent ART. We conducted a secondary analysis of data from an open-labeled randomized trial of second-line ART (ACTG A5234). ART susceptibility was determined from study entry plasma using the Stanford Drug Resistance database version 8.7. Adherence was measured with microelectronic monitors. Three adherence variables and rates of virologic failure (HIV-1 RNA ≥1000 copies/mL) on second-line ART were compared between participants with and without resistance at first-line ART failure. Of 214 participants switching to second-line ART with baseline resistance results, 113 (53%) were men, mean age was 39 years (standard deviation 10.3), and 37 (17%) had susceptible virus at study entry. Cumulative genotypic susceptibility score (cGSS) was inversely associated with adherence, adjusted odds ratio (aOR) 0.15, 95% confidence interval (CI) (0.05-0.40), p < 0.001. The aOR of virologic failure for a one-unit increase in cGSS was 1.72, 95% CI (1.22-2.41), p < 0.001. Participants switched to second-line ART without resistance displayed inferior adherence and had higher rates of virologic failure. Therefore, these individuals warrant additional adherence interventions to help them achieve virologic success. Clinical Trial Registration number: NCT00608569.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Adult , Anti-HIV Agents/therapeutic use , Anti-Retroviral Agents/therapeutic use , Antiretroviral Therapy, Highly Active , HIV Infections/drug therapy , Humans , Male , Treatment Failure , Viral Load
11.
PLoS Negl Trop Dis ; 15(5): e0009251, 2021 05.
Article in English | MEDLINE | ID: mdl-33956803

ABSTRACT

BACKGROUND: The current body of research on insecticide use in Peru deals primarily with application of insecticides offered through Ministry of Health-led campaigns against vector-borne disease. However, there is a gap in the literature regarding the individual use, choice and perceptions of insecticides which may influence uptake of public health-based vector control initiatives and contribute to the thousands of deaths annually from acute pesticide poisoning in Peru. METHODS: Residents (n = 49) of the Alto Selva Alegre and CC districts of peri-urban Arequipa participated in seven focus group discussions (FGD). Using a FGD guide, two facilitators led the discussion and conducted a role-playing activity. this activity, participants insecticides (represented by printed photos of insecticides available locally) and pretended to "sell" the insecticides to other participants, including describing their qualities as though they were advertising the insecticide. The exercise was designed to elicit perceptions of currently available insecticides. The focus groups also included questions about participants' preferences, use and experiences related to insecticides outside the context of this activity. Focus group content was transcribed, and qualitative data were analyzed with Atlas.ti and coded using an inductive process to generate major themes related to use and choice of insecticides, and perceived risks associated with insecticide use. RESULTS: The perceived risks associated with insecticides included both short- and long-term health impacts, and safety for children emerged as a priority. However, in some cases insecticides were reportedly applied in high-risk ways including application of insecticides directly to children and bedding. Some participants attempted to reduce the risk of insecticide use with informal, potentially ineffective personal protective equipment and by timing application when household members were away. Valued insecticide characteristics, such as strength and effectiveness, were often associated with negative characteristics such as odor and health impacts. "Agropecuarios" (agricultural supply stores) were considered a trusted source of information about insecticides and their health risks. CONCLUSIONS: It is crucial to characterize misuse and perceptions of health impacts and risks of insecticides at the local level, as well as to find common themes and patterns across populations to inform national and regional programs to prevent acute insecticide poisoning and increase community participation in insecticide-based vector control campaigns. We detected risky practices and beliefs about personal protective equipment, risk indicators, and safety levels that could inform such preventive campaigns, as well as trusted information sources such as agricultural stores for partnerships in disseminating information.


Subject(s)
Drug Misuse/adverse effects , Insecticides/pharmacology , Insecticides/poisoning , Mosquito Control/methods , Vector Borne Diseases/prevention & control , Adult , Aged , Aged, 80 and over , Animals , Arthropod Vectors/drug effects , Female , Focus Groups/statistics & numerical data , Health Impact Assessment , Humans , Male , Middle Aged , Peru , Risk , Young Adult
12.
PLoS Negl Trop Dis ; 15(5): e0009414, 2021 05.
Article in English | MEDLINE | ID: mdl-34019548

ABSTRACT

In Latin America, there has been tremendous progress towards eliminating canine rabies. Major components of rabies elimination programs leading to these successes have been constant and regular surveillance for rabid dogs and uninterrupted yearly mass dog vaccination campaigns. Unfortunately, vital measures to control COVID-19 have had the negative trade-off of jeopardizing these rabies elimination and prevention activities. We aimed to assess the effect of interrupting canine rabies surveillance and mass dog vaccination campaigns on rabies trends. We built a deterministic compartment model of dog rabies dynamics to create a conceptual framework for how different disruptions may affect rabies virus transmission. We parameterized the model for conditions found in Arequipa, Peru, a city with active rabies virus transmission. We examined our results over a range of plausible values for R0 (1.36-2.0). Also, we prospectively evaluated surveillance data during the pandemic to detect temporal changes. Our model suggests that a decrease in canine vaccination coverage as well as decreased surveillance could lead to a sharp rise in canine rabies within months. These results were consistent over all plausible values of R0. Surveillance data from late 2020 and early 2021 confirms that in Arequipa, Peru, rabies cases are on an increasing trajectory. The rising rabies trends in Arequipa, if indicative to the region as whole, suggest that the achievements made in Latin America towards the elimination of dog-mediated human rabies may be in jeopardy.


Subject(s)
COVID-19/epidemiology , Dog Diseases/epidemiology , Mass Vaccination/veterinary , Pandemics , Rabies virus/immunology , Rabies/epidemiology , SARS-CoV-2/physiology , Animals , COVID-19/virology , Disease Eradication , Dog Diseases/prevention & control , Dog Diseases/virology , Dogs , Humans , Latin America/epidemiology , Peru/epidemiology , Rabies/prevention & control , Rabies/virology , Rabies Vaccines/administration & dosage , Vaccination Coverage
13.
Nat Commun ; 12(1): 2274, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859196

ABSTRACT

Massive unemployment during the COVID-19 pandemic could result in an eviction crisis in US cities. Here we model the effect of evictions on SARS-CoV-2 epidemics, simulating viral transmission within and among households in a theoretical metropolitan area. We recreate a range of urban epidemic trajectories and project the course of the epidemic under two counterfactual scenarios, one in which a strict moratorium on evictions is in place and enforced, and another in which evictions are allowed to resume at baseline or increased rates. We find, across scenarios, that evictions lead to significant increases in infections. Applying our model to Philadelphia using locally-specific parameters shows that the increase is especially profound in models that consider realistically heterogenous cities in which both evictions and contacts occur more frequently in poorer neighborhoods. Our results provide a basis to assess eviction moratoria and show that policies to stem evictions are a warranted and important component of COVID-19 control.


Subject(s)
COVID-19/transmission , Communicable Disease Control/methods , Housing/legislation & jurisprudence , Pandemics/prevention & control , Policy , COVID-19/economics , COVID-19/epidemiology , COVID-19/virology , Cities/legislation & jurisprudence , Cities/statistics & numerical data , Communicable Disease Control/legislation & jurisprudence , Computer Simulation , Housing/economics , Humans , Models, Statistical , Philadelphia/epidemiology , SARS-CoV-2/pathogenicity , Unemployment/statistics & numerical data , Urban Population/statistics & numerical data
14.
PLoS Comput Biol ; 17(2): e1008684, 2021 02.
Article in English | MEDLINE | ID: mdl-33534808

ABSTRACT

In the absence of pharmaceutical interventions, social distancing is being used worldwide to curb the spread of COVID-19. The impact of these measures has been inconsistent, with some regions rapidly nearing disease elimination and others seeing delayed peaks or nearly flat epidemic curves. Here we build a stochastic epidemic model to examine the effects of COVID-19 clinical progression and transmission network structure on the outcomes of social distancing interventions. Our simulations show that long delays between the adoption of control measures and observed declines in cases, hospitalizations, and deaths occur in many scenarios. We find that the strength of within-household transmission is a critical determinant of success, governing the timing and size of the epidemic peak, the rate of decline, individual risks of infection, and the success of partial relaxation measures. The structure of residual external connections, driven by workforce participation and essential businesses, interacts to determine outcomes. We suggest limited conditions under which the formation of household "bubbles" can be safe. These findings can improve future predictions of the timescale and efficacy of interventions needed to control second waves of COVID-19 as well as other similar outbreaks, and highlight the need for better quantification and control of household transmission.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Communicable Disease Control/methods , Physical Distancing , Algorithms , COVID-19/epidemiology , China/epidemiology , Cluster Analysis , Computer Simulation , Disease Progression , Epidemics , Hospitalization , Humans , Models, Theoretical , Residence Characteristics
15.
medRxiv ; 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32577691

ABSTRACT

In the absence of pharmaceutical interventions, social distancing is being used worldwide to curb the spread of COVID-19. The impact of these measures has been inconsistent, with some regions rapidly nearing disease elimination and others seeing delayed peaks or nearly flat epidemic curves. Here we build a stochastic epidemic model to examine the effects of COVID-19 clinical progression and transmission network structure on the outcomes of social distancing interventions. Our simulations show that long delays between the adoption of control measures and observed declines in cases, hospitalizations, and deaths occur in many scenarios. We find that the strength of within-household transmission is a critical determinant of success, governing the timing and size of the epidemic peak, the rate of decline, individual risks of infection, and the success of partial relaxation measures. The structure of residual external connections, driven by workforce participation and essential businesses, interacts to determine outcomes. We suggest limited conditions under which the formation of household "bubbles" can be safe. These findings can improve future predictions of the timescale and efficacy of interventions needed to control second waves of COVID-19 as well as other similar outbreaks, and highlight the need for better quantification and control of household transmission.

16.
medRxiv ; 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33140067

ABSTRACT

Massive unemployment during the COVID-19 pandemic could result in an eviction crisis in US cities. Here we model the effect of evictions on SARS-CoV-2 epidemics, simulating viral transmission within and among households in a theoretical metropolitan area. We recreate a range of urban epidemic trajectories and project the course of the epidemic under two counterfactual scenarios, one in which a strict moratorium on evictions is in place and enforced, and another in which evictions are allowed to resume at baseline or increased rates. We find, across scenarios, that evictions lead to significant increases in infections. Applying our model to Philadelphia using locally-specific parameters shows that the increase is especially profound in models that consider realistically heterogenous cities in which both evictions and contacts occur more frequently in poorer neighborhoods. Our results provide a basis to assess municipal eviction moratoria and show that policies to stem evictions are a warranted and important component of COVID-19 control.

17.
PLoS Negl Trop Dis ; 14(7): e0008478, 2020 07.
Article in English | MEDLINE | ID: mdl-32692739

ABSTRACT

A canine rabies epidemic started in early 2015 in Arequipa, Peru and the rabies virus continues to circulate in the dog population. Some city residents who suffer dog bites do not seek care or do not complete indicated post-exposure prophylaxis (PEP) regimens, increasing the risk of human rabies. The objectives of our study are to qualitatively assess knowledge about rabies, and preventive practices, such as rabies vaccine administration, following a dog bite. We conduct eight focus group discussions in peri-urban and urban communities with 70 total participants. In our results, we observe low awareness of rabies severity and fatality, and different practices following a dog bite, depending on the community type: for example, whereas participants in the urban communities report cleaning the wound with hydrogen peroxide rather than soap and water, participants in peri-urban areas cover the wound with herbs and hair from the dog that bit them. Misconceptions about rabies vaccines and mistreatment at health centers also commonly prevent initiating or completing PEP. We identify important behavioral and structural barriers and knowledge gaps that limit evidence-based preventive strategies against rabies and may threaten successful prevention of dog-mediated human rabies in this setting.


Subject(s)
Dog Diseases/virology , Post-Exposure Prophylaxis , Rabies Vaccines/immunology , Rabies/veterinary , Animals , Bites and Stings/complications , Dog Diseases/epidemiology , Dog Diseases/prevention & control , Dogs , Female , Focus Groups , Health Knowledge, Attitudes, Practice , Humans , Male , Peru/epidemiology , Rabies/epidemiology , Rabies/prevention & control , Rabies Vaccines/administration & dosage , Urban Population , Wounds and Injuries/therapy
18.
Am J Trop Med Hyg ; 103(3): 1247-1257, 2020 09.
Article in English | MEDLINE | ID: mdl-32662391

ABSTRACT

Since its reintroduction in 2015, rabies has been established as an enzootic disease among the dog population of Arequipa, Peru. Given the unknown rate of dog bites, the risk of human rabies transmission is concerning. Our objective was to estimate the rate of dog bites in the city and to identify factors associated with seeking health care in a medical facility for wound care and rabies prevention follow-up. To this end, we conducted a door-to-door survey with 4,370 adults in 21 urban and 21 peri-urban communities. We then analyzed associations between seeking health care following dog bites and various socioeconomic factors, stratifying by urban and peri-urban localities. We found a high annual rate of dog bites in peri-urban communities (12.4%), which was 2.6 times higher than that in urban areas (4.8%). Among those who were bitten, the percentage of people who sought medical treatment was almost twice as high in urban areas (39.1%) as in peri-urban areas (21.4%).


Subject(s)
Bites and Stings/epidemiology , Dog Diseases/epidemiology , Patient Acceptance of Health Care/statistics & numerical data , Rabies Vaccines/therapeutic use , Rabies/epidemiology , Socioeconomic Factors , Adult , Animals , Bites and Stings/virology , Demography , Dog Diseases/virology , Dogs , Epidemiological Monitoring , Female , Health Facilities , Humans , Male , Middle Aged , Peru/epidemiology , Post-Exposure Prophylaxis/statistics & numerical data , Rabies/virology , Risk , Surveys and Questionnaires , Urban Population , Zoonoses
19.
Trop Med Infect Dis ; 5(2)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492771

ABSTRACT

Blood-sucking triatomine bugs transmit the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease. We measured the prevalence of T. cruzi infection in 58,519 Triatoma infestans captured in residences in and near Arequipa, Peru. Among bugs from infected colonies, T. cruzi prevalence increased with stage from 12% in second instars to 36% in adults. Regression models demonstrated that the probability of parasite acquisition was roughly the same for each developmental stage. Prevalence increased by 5.9% with each additional stage. We postulate that the probability of acquiring the parasite may be related to the number of feeding events. Transmission of the parasite does not appear to be correlated with the amount of blood ingested during feeding. Similarly, other hypothesized transmission routes such as coprophagy fail to explain the observed pattern of prevalence. Our results could have implications for the feasibility of late-acting control strategies that preferentially kill older insects.

20.
Prev Vet Med ; 178: 104978, 2020 May.
Article in English | MEDLINE | ID: mdl-32302776

ABSTRACT

In 2015, a case of canine rabies in Arequipa, Peru indicated the re-emergence of rabies virus in the city. Despite mass dog vaccination campaigns across the city and reactive ring vaccination and other control activities around positive cases (e.g. elimination of unowned dogs), the outbreak has spread. Here we explore how the urban landscape of Arequipa affects the movement patterns of free-roaming dogs, the main reservoirs of the rabies virus in the area. We tracked 23 free-roaming dogs using Global Positioning System (GPS) collars. We analyzed the spatio-temporal GPS data using the time- local convex hull method. Dog movement patterns varied across local environments. We found that water channels, an urban feature of Arequipa that are dry most of the year, promote movement. Dogs that used the water channels extensively move on average 7 times further (p = 0.002) and 1.2 times more directionally (p = 0.027) than dogs that do not use the water channels at all. They were also 1.3 times faster on average, but this difference was not statistically significant (p = 0.197). Our findings suggest that water channels can be used by dogs as 'highways' to transverse the city and have the potential to spread disease far beyond the radius of control practices. Control efforts should focus on a robust vaccination campaign attuned to the geography of the city, and not limited to small-scale rings surrounding cases.


Subject(s)
Animal Distribution , Dog Diseases/prevention & control , Dogs/physiology , Environment , Movement , Rabies/veterinary , Animals , Cities , Geographic Information Systems , Peru , Rabies/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...